Abstract

Genetic mutations related to amyotrophic lateral sclerosis (ALS) act through distinct pathophysiological pathways, which may lead to varying treatment responses. Here we assess the genetic interaction between C9orf72, UNC13A, and MOBP with creatine and valproic acid treatment in two clinical trials. Genotypic data was available for 309 of the 338 participants (91.4%). The UNC13A genotype affected mortality (p = 0.012), whereas C9orf72 repeat-expansion carriers exhibited a faster rate of decline in overall (p = 0.051) and bulbar functioning (p = 0.005). A dose-response pharmacogenetic interaction was identified between creatine and the A allele of the MOBP genotype (p = 0.027), suggesting a qualitative interaction in a recessive model (HR 3.96, p = 0.015). Not taking genetic information into account may mask evidence of response to treatment or be an unrecognized source of bias. Incorporating genetic data could help investigators to identify critical treatment clues in patients with ALS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.