Abstract
Elevated nitric oxide (NO) production has been implicated in the development of morphine antinociceptive tolerance. This study was conducted to establish the temporal relationship between morphine-induced increases in neuronal NO and loss of pharmacologic activity. Five groups of rats equipped with microdialysis probes in the jugular vein and hippocampus received an intravenous infusion of saline or morphine (0.3, 1, 2, or 3 mg/kg/h) for 8 h. Morphine concentrations in the blood and hippocampal microdialysate were determined by LC/MS-MS; NO production was quantified with an amperometric sensor implanted in the contralateral hippocampus. Antinociceptive effect was monitored at selected time points during and following infusion by electrical stimulation vocalization. The data were fit with a pharmacokinetic/pharmacodynamic model to obtain parameters governing morphine disposition, stimulation of NO production, antinociception, and antinociceptive tolerance development. An additional three groups of rats were pretreated with l-arginine, the NO precursor (100, 300, or 500 mg/kg/h for 8 h), to elevate NO concentrations prior to morphine infusion. Morphine administration resulted in a dose-dependent increase in NO production; the time course of altered NO production coincided with the development of antinociceptive tolerance. l-arginine pretreatment initially enhanced morphine-induced analgesia early in the morphine infusion. However, this NO-associated increase in opioid response dissipated rapidly due to a dominant NO-induced loss of antinociception. Pharmacodynamic modeling suggested that this latter effect was consistent with a hyperalgesic response. These data define a strong, time-dependent relationship between morphine-induced stimulation of NO production and tolerance development, identify specific NO-induced alterations in nociceptive processing after morphine administration, and indicate that NO is a key mediator of antinociceptive tolerance development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.