Abstract

We have focused on accelerating the degradation of fAβ-Cu as well as synthetically reducing the ROS toxicity by GR, and, consequently, its benefits in vivo. The bifunctional peptide GR can not only disaggregate fAβ-Cu into smaller fragments to facilitate uptake and degradation by PC12 cell, but also suppresses the ROS generated by fAβ-Cu. Thus, the viability of PC12 cell treated with fAβ-Cu has increased from 38% to 70% after GR administration, overwhelming GGH (46%) and RR (48%). The in vivo studies have revealed that GR improves the spatial memory ability and reduce the amount of senile plaques within brain of AD model rats. Thus, we suppose the bifunctional inhibitor GR has good application prospects in the treatment of AD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.