Abstract
Vitamin K epoxide reductase subunit 1 (VKORC1) is the molecular target of coumarin anticoagulants and mutations in VKORC1 have been identified previously in individuals who required high warfarin doses. Detailed characterization of the relationship between variation in VKORC1 and the warfarin resistance phenotype. Serum warfarin concentration and coagulation parameters were determined in 289 subjects who required warfarin doses >20 mg day(-1). The VKORC1 sequence was studied in selected study subjects. Twenty-eight out of 289 (10%) subjects had serum warfarin >2.3 mg L(-1) during stable therapeutic anticoagulation indicating pharmacodynamic warfarin resistance. Detailed analysis of 15 subjects from this group showed that eight out of 15 (53%) had nucleotide substitutions in VKORC1 predictive of p.V66M, p.L128R, p.V54L or p.D36Y. VKORC1 was normal in the remaining seven out of 15 (47%) subjects and in nine out of nine (100%) subjects with high warfarin dose requirement not caused by pharmacodynamic resistance. At referral, subjects with VKORC1 mutations received a median warfarin dose of 32 mg day(-1) (range 22-55) and had a median serum warfarin concentration of 4.6 mg L(-1) (range 2.6-9.0). VKORC1 substitutions were associated with a requirement for high warfarin doses but not with adverse clinical events. Family members with VKORC1 nucleotide substitutions and not receiving warfarin had undetectable PIVKA-II and K(1) epoxide (K(1)O). Nucleotide variations in VKORC1 are a common cause of pharmacodynamic warfarin resistance but are not associated with adverse outcome during anticoagulation. Mutations associated with warfarin resistance do not cause a discernible defect in VKORC1 reductase function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.