Abstract
We aimed to quantify the daratumumabconcentration- and CD38 dynamics-dependent pharmacokinetics using a pharmacodynamic mediated disposition model (PDMDD) in patients with multiple myeloma (MMY) following daratumumab IV or SC monotherapy. Daratumumab, a human IgG monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory mechanism of action, has been approved to treat patients with multiple myeloma (MM). In total, 7788 daratumumab plasma samples from 850 patients with diagnosis of MMY were used. The serum concentration-time data of daratumumab were analysed using nonlinear mixed-effects modeling with NONMEM®. The PDMDD with quasi steady-state approximation (QSS) was compared to the previously developed Michaelis-Menten (MM) approximation with respect to the parameter estimates, the goodness-of-fit plots and prediction-corrected visual predictive check, as well as model-based simulations. The effect of patients' covariates on daratumumab pharmacokinetics was also investigated. The QSS approximation characterized the concentration- and CD38 dynamics-dependency of daratumumab pharmacokinetics within the doses ranging from 0.1 to 24 mg/kg after IV administration and 1200 and 1800 mg after SC administration in patients with MMY, mechanistically describing the binding of daratumumab and CD38, the internalization of the daratumumab-CD38 complex and the CD38 turnover. Compared to the previously developed MM approximation, the MM approximation with the non-constant total target and dose-correction provided substantial improvement of the model fit, but it was still not as good as the QSS approximation. The effect of the previously identified covariates as well as the newly identified covariate (baseline M protein) on daratumumab pharmacokinetics was confirmed, but the magnitude of the effect was deemed not clinically relevant. Accounting for the CD38 turnoverand its binding capacity to daratumumab, the QSS approximation provided a mechanistic interpretation of daratumumab PK parameters and consequently well described the concentration- and CD38 dynamics-dependency of daratumumab pharmacokinetics. CLINICAL STUDIES INCLUDED IN THE ANALYSIS WERE REGISTERED WITH THE NCT NUMBER BELOW AT HTTP://WWW. GOV : MMY1002 (ClinicalTrials.gov: NCT02116569), MMY1003 (NCT02852837), MMY1004 (NCT02519452), MMY1008 (NCT03242889), GEN501 (NCT00574288), MMY2002 (NCT01985126), MMY3012 (NCT03277105).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.