Abstract

BackgroundPropofol and remifentanil are frequently combined for the induction and maintenance of general anaesthesia. Both propofol and remifentanil cause vasodilation and potentially reduce arterial BP. We aimed to develop a mechanism-based model that characterises the haemodynamic interactions between remifentanil and propofol. MethodsData from two clinical trials in healthy volunteers were analysed using remifentanil-alone, propofol-alone, and combination groups. We evaluated remifentanil effects on haemodynamics using a previously developed mechanism-based haemodynamic model of propofol. The interaction between propofol and remifentanil was explored using the principles of the general pharmacodynamic interaction (GPDI) model. ResultsRemifentanil alone increased the dissipation rate of total peripheral resistance by 50% at 3.0 ng ml−1. Additionally, the dissipation rates of HR and stroke volume were attenuated by 4.8% and 4.9% per 1 ng ml−1 increase in remifentanil concentration, respectively. The maximal effect of propofol alone in decreasing the production rate of total peripheral resistance was 78%, which decreased to 32% when combined with remifentanil 4 ng ml−1. The effects of remifentanil on HR and stroke volume were attenuated by propofol with maximum decreases of 11.9% and 21.2%, respectively. Goodness-of-fit plots and prediction-corrected visual predictive check plots showed good predictive performance of the models. ConclusionsThe structure of the previous mechanism-based haemodynamic model for propofol was able to describe the effects of remifentanil alone on haemodynamic variables. The GPDI model provided a good framework for characterising the pharmacodynamic interaction between remifentanil and propofol on haemodynamic properties. Clinical trial registrationNCT02043938; NCT03143972.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call