Abstract

AimsMany patients are unable to achieve guideline-recommended LDL cholesterol (LDL-C) targets, despite taking maximally tolerated lipid-lowering therapy. Bempedoic acid, a competitive inhibitor of ATP citrate lyase, significantly lowers LDL-C with or without background statin therapy in diverse populations. Because pharmacodynamic interaction between statins and bempedoic acid is complex, a dose–response model was developed to predict LDL-C pharmacodynamics following administration of statins combined with bempedoic acid.Methods and resultsBempedoic acid and statin dosing and LDL-C data were pooled from 14 phase 1–3 clinical studies. Dose–response models were developed for bempedoic acid monotherapy and bempedoic acid–statin combinations using previously published statin parameters. Simulations were performed using these models to predict change in LDL-C levels following treatment with bempedoic acid combined with clinically relevant doses of atorvastatin, rosuvastatin, simvastatin, and pravastatin. Dose–response models predicted that combining bempedoic acid with the lowest statin dose of commonly used statins would achieve a similar degree of LDL-C lowering as quadrupling that statin dose; for example, the predicted LDL-C lowering was 54% with atorvastatin 80 mg compared with 54% with atorvastatin 20 mg + bempedoic acid 180 mg, and 42% with simvastatin 40 mg compared with 46% with simvastatin 10 mg + bempedoic acid 180 mg.ConclusionThese findings suggest bempedoic acid combined with lower statin doses offers similar LDL-C lowering compared with statin monotherapy at higher doses, potentially sparing patients requiring additional lipid-lowering therapies from the adverse events associated with higher statin doses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call