Abstract

This study investigated the efficiency of two advanced oxidation processes (AOPs), ozonation (O3), and electrochemical oxidation (EO), applied individually or in combination, in the removal of contaminants of emerging concern (CECs) contained in hospital wastewaters, focusing on pharmaceuticals. The optimisation of the single technologies was performed using synthetic wastewater composed of four refractory pharmaceuticals, (carbamazepine-CBZ, lorazepam-LZP, ketoprofen-KTP, 10,11-epoxicarbamazepine-E-CBZ), first alone and then in mixture, in an initial concentration of 1 mg L−1 each. Once the best operational conditions for EO and O3 were defined, their combination (both simultaneous and sequential) was evaluated for the mixture of the selected pharmaceuticals. The treatment solution that showed the best performance was the simultaneous combination of O3 and EO. This treatment was validated using real hospital wastewater previously treated through a moving bed biofilm reactor (MBBR), evaluating its viability by testing the toxicity of the final effluent via Vibrio fischeri inhibition tests. The obtained results showed that the simultaneous combination of O3 and EO as the polishing step after a biological treatment is a very promising solution for hospital wastewater treatment, allowing for obtaining a non-toxic effluent and full degradation of refractory compounds. The disinfection potential of the proposed AOP was also assessed by determining Escherichia coli inactivation potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call