Abstract

BackgroundApolipoprotein E (ApoE) is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD) and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs) were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs) are a promising vector for the administration of ApoE ε3 in humans.ResultsUnlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM) were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days.ConclusionThe data demonstrated that pre-treatment and perhaps co-administration of MSCs homozygous for ApoE ε3 and dexamethasone may represent a novel therapy for severe instances of AD, atherosclerosis and other ApoE-related diseases.

Highlights

  • Apolipoprotein E (ApoE) is a molecular scavenger in the blood and brain

  • We demonstrate here that dexamethasone alone or adipo-inductive media (AIM) containing dexamethasone, indomethacin and isobutylmethylxanthine resulted in the expression of high levels of ApoE by human mesenchymal stromal cells (MSC) (hMSCs) in vitro

  • The hMSCs readily differentiated into all three lineages when subjected to the appropriate conditions (Figure 1)

Read more

Summary

Introduction

Apolipoprotein E (ApoE) is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD) and atherosclerosis. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) are adult progenitor cells found in numerous tissues. They are expanded in culture and engraft into host tissues when administered appropriately. Its primary function is to scavenge cholesterol, associated lipids and proteins for transport to the liver for processing. The role of ApoE in the central nervous system is thought to be comparable to its role in plasma, sequestering cholesterol, lipids and other macromolecular debris from neural tissue [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.