Abstract

Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare the graft copolymers (19-50 mol% of TMAMA units) serving as the drug (co)delivery systems. The in vitro drug release, which was driven by the exchange reaction of the pharmaceutical anions to phosphate ones in PBS medium, was observed for 44% of CLX¯ (2.7 μg/mL) and 53% of FUS¯ (3.6 μg/mL) in the single systems. Similar amounts of released drugs were detected for the dual system, i.e., 41% of CLX¯ (2.2 μg/mL) and 33% of FUS¯ (2.0 μg/mL). The investigated drug ionic polymer conjugates were examined for their cytotoxicity by MTT test, showing a low toxic effect against human bronchial epithelial cells (BEAS-2B) and normal human dermal fibroblasts (NHDF) as the normal cell lines. The satisfactory drug contents and the release profiles attained for the well-defined graft polymers with ionically bonded pharmaceuticals in the side chains make them promising drug carriers in both separate and combined drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call