Abstract

Purpose To examine the diagnostic performance of high-spatial-resolution (HSR) CT with 0.25-mm section thickness for evaluating renal artery in-stent restenosis. Materials and Methods A 0.05-mm wire phantom and vessel phantoms with renal stents with in-stent stenotic sections of varying diameters were scanned with both an HSR CT scanner equipped with 160-section multi-detector rows (0.25-mm section thickness) and a conventional CT scanner. The wire phantom was used to analyze modulation transfer function (MTF). With the vessel phantoms, the error rates were calculated as the absolute difference between the measured diameters and true diameters divided by the true diameters at the narrowing sections. For qualitative evaluation, overall image quality and diagnostic accuracy for evaluating stenosis in three stages were assessed by two radiologists. Statistical analyses included the paired t test, Wilcoxon signed-rank test, and McNemar test. Results HSR CT achieved 24.3 line pairs per centimeter ± 0.5 (standard deviation) and 29.1 line pairs per centimeter ± 0.4 at 10% and 2% MTF, respectively; and conventional CT was 12.5 line pairs per centimeter ± 0.1 and 14.3 line pairs per centimeter ± 0.1 at 10% and 2% MTF, respectively. The mean error rate of the measured diameter at HSR CT (8.0% ± 5.8) was significantly lower than that at at conventional CT (16.9% ± 9.3; P < .001). Image quality at HSR CT was significantly better than that at conventional CT (P < .001), but HSR CT was not significantly superior to conventional CT in terms of diagnostic accuracy. Conclusion Compared with conventional CT, high-spatial-resolution CT achieved spatial resolutions of up to 29 line pairs per centimeter at 2% modulation transfer function and yielded improved measurement accuracy for the evaluation of in-stent restenosis in a phantom study of renal artery stents. Published under a CC BY 4.0 license.

Highlights

  • Next-generation high-spatial-resolution CT has potential to be a useful tool for the evaluation of in-stent restenosis in renal artery stents

  • The 21 line pairs per centimeter gauge was resolved with the bone kernel at high spatial resolution CT, E

  • CT angiography has certain disadvantages including lower spatial resolution and deterioration in the image quality from blooming artifacts caused by the metal frame of the stents or severe calcification of the renal arterial wall (1,Syntax Warning: Invalid Font Weight 2)

Read more

Summary

Objectives

The purpose of our study was to examine by using vessel phantom models the diagnostic performance of HSR CT

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call