Abstract

BackgroundWhile fluorodeoxyglucose (FDG) and amyloid PET is valuable for patient management, research, and clinical trial of therapeutics on Alzheimer’s disease, the specific details of the PET scanning method including the PET camera model type influence the image quality, which may further affect the interpretation of images and quantitative capabilities. To make multicenter PET data reliable and to establish PET scanning as a universal diagnostic technique and a verified biomarker, we have proposed phantom test procedures and criteria for optimizing image quality across different PET cameras.ResultsAs the method, four physical parameters (resolution, gray-white contrast, uniformity, and image noise) were selected as essential to image quality for brain FDG and amyloid PET and were measured with a Hoffman 3D brain phantom and a uniform cylindrical phantom on a total of 12 currently used PET models. The phantom radioactivity and acquisition time were determined based on the standard scanning protocol for each PET drug (FDG, 11C-PiB, 18F-florbetapir, and 18F-flutemetamol). Reconstruction parameters were either determined based on the methods adopted in ADNI, J-ADNI, and other research and clinical trials or optimized based on measured phantom image parameters under various reconstruction conditions.As the result, phantom test criteria were proposed as follows: (i) 8 mm FWHM or better resolution and (ii) gray/white %contrast ≥55 % with the Hoffman 3D brain phantom and (iii) SD of 51 small region of interests (ROIs) ≤0.0249 (equivalent to 5 % variation) for uniformity and (iv) image noise (SD/mean) ≤15 % for a large ROI with the uniform cylindrical phantom. These criteria provided image quality conforming to those multicenter clinical studies and were also achievable with most of the PET cameras that are currently used.ConclusionsThe proposed phantom test criteria facilitate standardization and qualification of brain FDG and amyloid PET images and deserve further evaluation by future multicenter clinical studies.

Highlights

  • While fluorodeoxyglucose (FDG) and amyloid PET is valuable for patient management, research, and clinical trial of therapeutics on Alzheimer’s disease, the specific details of the PET scanning method including the PET camera model type influence the image quality, which may further affect the interpretation of images and quantitative capabilities

  • PET image quality depends on the PET camera model and the specific reconstruction and acquisition details including injected activity, scan time, and reconstruction parameters, even if the radioactivity distribution is the same [5]

  • In a well-controlled multicenter clinical research using PET on Alzheimer’s disease (AD), such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) [6], ADNI2 [7], and J-ADNI [8], and in industry-sponsored clinical trials [9, 10] on amyloid PET diagnostics or on therapeutics using brain FDG and amyloid PET, the PET QC manager has examined and qualified the PET cameras of each participating PET center based on phantom data

Read more

Summary

Introduction

While fluorodeoxyglucose (FDG) and amyloid PET is valuable for patient management, research, and clinical trial of therapeutics on Alzheimer’s disease, the specific details of the PET scanning method including the PET camera model type influence the image quality, which may further affect the interpretation of images and quantitative capabilities. In a well-controlled multicenter clinical research using PET on AD, such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) [6], ADNI2 [7], and J-ADNI [8], and in industry-sponsored clinical trials [9, 10] on amyloid PET diagnostics or on therapeutics using brain FDG and amyloid PET, the PET QC manager has examined and qualified the PET cameras of each participating PET center based on phantom data. The details of the PET camera qualification procedures and criteria in industry-sponsored clinical trials are usually not open to the public

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.