Abstract
Abstract Braneworld models with induced gravity exhibit phantom-like behavior of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of H 0, preferred by recent local measurements while satisfying the cosmic microwave background constraints. We test the background evolution in such phantom braneworld scenarios with the current observational data sets. We find that the phantom braneworld prefers a higher value of H 0 even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.