Abstract

The dielectric properties of human liver were characterized over the frequency range of 0.3-3 GHz for freshly excised tissue samples of primary hepatocellular carcinoma, metastatic colorectal carcinoma, and normal liver tissues resected from the tumour margin. On average, the dielectric constant (^9; r ) of freshly excised human liver tumour was 12% higher than that of surrounding normal liver, and the electrical conductivity (`3;) of tumour was 24% higher. In order to establish suitable tissue models for human liver, the electrical properties were compared to measurements of homogenous phantom mixtures, in vitro bovine liver, and in vivo canine and porcine liver tissues. The data demonstrate that there are several animal tissues that can be used to model the average dielectric properties of human liver reasonably accurately, and use of the most readily available bovine liver appears well-justified, even when stored for up to 10 days in a refrigerator. Additionally, the dielectric properties of in vitro liver remained stable over a large temperature range, with `3; rising only 1.1%/°C in porcine liver (15-37°C) and 2.0%/°C in bovine liver (10-90°C), and ^9; r decreasing Ͱ4;0.2%/°C in both tissues. This effort identifies homogeneous solid and liquid phantom models and several heterogeneous in vitro tissues that adequately model the dielectric properties of human liver tumours for use in quantitative studies of microwave power deposition in liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.