Abstract

Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.