Abstract

The structure of the Jiuling Massif has been investigated in order to delineate the polyorogenic deformation and discuss its geodynamic evolution and orogenic mechanisms. Detailed structural analysis indicates that the D1 event is characterized by top-to-the NNW ductile shearing with pervasive foliation, and mineral and stretching lineation developed in the entire region. Compared with the D1 deformation, D2 structures are localized in ductile shear zones with subvertical foliation and subhorizontal E–W trending lineation, indicating a dextral ductile shearing. The D3 event, marked by folds and thrusts mainly in a brittle domain, modified the D1 structures by asymmetrical folds. The dominant D4 structures are gravitational folds and normal faults, corresponding to a later extension. Our new geochronological data suggest that the D1 event occurred between 465 and 380Ma with D2 dextral shearing at the end of this Early Paleozoic orogen, and the D3 event has been constrained at 245–215Ma. The final uplift of the Jiuling Massif by the D4 event can be correlated with the Late Mesozoic extension across the eastern South China block. Along with previous studies in the South China block, the structural pattern of the Jiuling Massif elucidates the influence of the Early Paleozoic and Early Mesozoic intracontinental belts triggered by repeated reactivation of the Jiangshan–Shaoxing Fault. Combined with deformation to the south, the Early Paleozoic belt shows a positive flower pattern, with opposing kinematics, rooted in the Jiangshan–Shaoxing Fault. During the Early Mesozoic, a general intracontinental belt was developed with uniform kinematics in both the Jiuling Massif and the Xuefengshan Belt, possibly resulted from the far-field effect of the Triassic NW-directed Paleo-Pacific subduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.