Abstract

X-ray crystallography provides a distinctive view on the three-dimensional structure of crystals. To reconstruct the electron density map, the complex structure factors [Formula: see text] of a sufficiently large number of diffracted reflections must be known. In a conventional experiment, only the amplitudes [Formula: see text] are obtained, and the phases ϕ are lost. This is the crystallographic phase problem. In this work, we show that a neural network, trained on millions of artificial structure data, can solve the phase problem at a resolution of only 2 angstroms, using only 10 to 20% of the data needed for direct methods. The network works in common space groups and for modest unit-cell dimensions and suggests that neural networks could be used to solve the phase problem in the general case for weakly scattering crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.