Abstract

The molecular mechanisms underlying the phagocytosis of apoptotic cells need to be elucidated in more detail because of its role in immune and inflammatory intractable diseases. We herein developed an experimental method to investigate phagocytosis quantitatively using the fruit fly Drosophila, in which the gene network controlling engulfment reactions is evolutionally conserved from mammals. In order to accurately detect and count engulfing and un-engulfing phagocytes using whole animals, Drosophila embryos were homogenized to obtain dispersed cells including phagocytes and apoptotic cells. The use of dispersed embryonic cells enables us to measure in vivo phagocytosis levels as if we performed an in vitro phagocytosis assay in which it is possible to observe all phagocytes and apoptotic cells in whole embryos and precisely quantify the level of phagocytosis. We confirmed that this method reproduces those of previous studies that identified the genes required for the phagocytosis of apoptotic cells. This method allows the engulfment of dead cells to be analyzed, and when combined with the powerful genetics of Drosophila, will reveal the complex phagocytic reactions comprised of the migration, recognition, engulfment, and degradation of apoptotic cells by phagocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call