Abstract

Addition of chemical oxidants to cells in culture has been shown to induce binding of low-molecular-weight thiols to reactive sulfhydryls on proteins in a process termed S-thiolation. We found that stimulation of the respiratory burst in mouse macrophages, with release of O2-, resulted in S-thiolation of several proteins, most prominently three with molecular weights of 74, 33, and 22 kDa. One protein (28 kDa) was S-thiolated without addition of an exogenous stimulus. Exposure of cells to concentrations of hydrogen peroxide like those released in the respiratory burst induced S-thiolation of these same proteins. S-thiolation and release of O2- began at approximately the same time. Stimulation of LPS-elicited macrophages induced prominent S-thiolation of three different proteins (38, 30, and 21 kDa). Under the conditions of these experiments, there was no detectable increase in glutathione disulfide and a negligible decrease in glutathione, which suggests that S-thiolation can occur without significant perturbation of the glutathione peroxidase/reductase cycle. S-thiolation of proteins could help protect the macrophage against the autoxidative damage associated with the respiratory burst. Modification of specific proteins by S-thiolation might serve to modulate cellular metabolic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.