Abstract
Apical membrane antigen-1 (AMA1) is a transmembrane protein present on the surface of merozoites that is thought to be involved in the process of parasite invasion of host erythrocytes. Although it is the target of a natural immune response that can inhibit invasion, little is known about the molecular mechanisms by which AMA1 facilitates the invasion process. In an attempt to identify peptides that specifically interact with and block the function of AMA1, a random peptide library displayed on the surface of filamentous phage was panned on recombinant AMA1 from Plasmodium falciparum. Three peptides with affinity for AMA1 were isolated, and characterization of their fine binding specificities indicated that they bind to a similar region on the surface of AMA1. One of these peptides was found to be a potent inhibitor of the invasion of P. falciparum merozoites into human erythrocytes. We propose that this peptide blocks interaction between AMA1 and a ligand on the erythrocyte surface that is involved in a critical step in malarial invasion. The identification and characterization of these peptide inhibitors now permit an evaluation of the essential requirements that are necessary for efficient neutralization of merozoite invasion by blocking AMA1 function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.