Abstract

There is an urgent need to develop fast and sensitive detection methods for foodborne pathogens. But the conventional culture method that typically requires 2–3 days is not ideal for the rapid analysis. Food samples demonstrate a great challenge for direct detection due to the complex matrix. Hence, we present a new method based on the phage long-tail-fiber proteins (LTF4-a) immobilized magnetic nanoparticles (MNPs) for specific separation and concentration of Salmonella. The LTF4-a-MNP was prepared via the coupling of recombinant LTF4-a with MNPs and used to isolate and enrich Salmonella cells from contaminated food samples. The captured material was further integrated with the direct PCR program for accurate detection of Salmonella. Our study successfully established a new method for detecting contaminated food samples of Salmonella, the overall approach took no more than 3 h, which allowed a detection limit of 7 CFU/mL, demonstrating a promising alternative to the immunomagnetic separation method by replacing antibodies or aptamers, that is compatible with downstream analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call