Abstract

Metallo-β-lactamases (MBLs) are members of the structurally conserved but functionally diverse MBL-fold superfamily of metallohydrolases. MBLs are a major concern for global health care as they efficiently inactivate β-lactam antibiotics, including the “last-resort” carbapenems, and no clinically suitable inhibitors are currently available. Increasingly, promiscuous β-lactamase activity is also observed in other members of the superfamily, including from viruses, which represents an underexplored reservoir for future pathways to antibiotic resistance. Here, two such MBL-fold enzymes from Bacillus phages, the cyclic mononucleotide-degrading proteins ApycGoe3 and ApycGrass, are shown to degrade β-lactam substrates efficiently in vitro. In particular, ApycGrass displays a distinct preference for carbapenem substrates with a catalytic efficiency that is within one order of magnitude of the clinically relevant MBL NDM-1. Mutagenesis experiments also demonstrate that the loss of a metal-bridging aspartate residue reduces nuclease activity up to 35-fold but improves carbapenemase activity. In addition, we hypothesise that the oligomeric state significantly influences β-lactamase activity by modifying access to the active site pocket. Together, these observations hint at a possible new avenue of resistance via the spread of phage-borne MBL-fold enzymes with β-lactamase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.