Abstract
Motivation: Bacteriophages have two distinct lifestyles: virulent and temperate. The virulent lifestyle has many implications for phage therapy, genomics and microbiology. Determining which lifestyle a newly sequenced phage falls into is currently determined using standard culturing techniques. Such laboratory work is not only costly and time consuming, but also cannot be used on phage genomes constructed from environmental sequencing. Therefore, a computational method that utilizes the sequence data of phage genomes is needed.Results: Phage Classification Tool Set (PHACTS) utilizes a novel similarity algorithm and a supervised Random Forest classifier to make a prediction whether the lifestyle of a phage, described by its proteome, is virulent or temperate. The similarity algorithm creates a training set from phages with known lifestyles and along with the lifestyle annotation, trains a Random Forest to classify the lifestyle of a phage. PHACTS predictions are shown to have a 99% precision rate.Availability and implementation: PHACTS was implemented in the PERL programming language and utilizes the FASTA program (Pearson and Lipman, 1988) and the R programming language library ‘Random Forest’ (Liaw and Weiner, 2010). The PHACTS software is open source and is available as downloadable stand-alone version or can be accessed online as a user-friendly web interface. The source code, help files and online version are available at http://www.phantome.org/PHACTS/.Contact: katelyn@rohan.sdsu.edu; redwards@sciences.sdsu.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.