Abstract
pH-triggered microparticles release their therapeutic payloads at acidic pH (e.g., in the phagosome), making intracellular drug delivery more efficient. Here we modify lipid-based microparticles that are safe and efficacious in nerve and brain and are potentially inhalable, making them pH-triggerable by incorporating an acid-soluble polymethacrylate, Eudragit E100 (E100). Microparticles were produced by spray-drying and characterized by electron microscopy, Coulter counting, density measurement, and release kinetics of fluorescently labeled proteins. In addition, biocompatibility and cellular uptake were observed in rats. Microparticles were spheroids 3 to 5 microm in diameter with densities of 0.12 to 0.25 g/L. Microparticles with 20% (w/w) or more E100 demonstrated slow release of fluorescently labeled proteins at pH 7.4 but rapid release at pH 5. pH-triggerability was maintained for over 2 weeks in solution. Protein loadings of 0.2-20% (w/w) were pH-triggerable. Histologic examination of particles in rat connective tissue near nerve and muscle demonstrated biocompatibility aside from muscle edema in the cell layers adjacent to the particles and a localized inflammatory reaction with macrophages laden with microparticles. Microparticles containing E100 were pH-triggerable for many days and were taken up by macrophages, suggesting that they may be useful for intracellular drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.