Abstract

The majority of current pH-triggered release systems is designed to respond to either low or high pH. Encapsulants based on polyampholytes are an example of materials that can respond to both acidic and basic pH. However, polyampholyte-based encapsulants generally possess a low loading capacity and have difficulty retaining their small-molecule cargo. The current work utilizes interfacial polymerization between polyamines and a pyromellitic diester diacid chloride to form high capacity "liquid core-shell" polyamide microcapsules that are stable in a dry or nonpolar environment but undergo steady, controlled release at pH 7.4 and accelerated release at pH 5 and pH 10. The rate of release can be tuned by adjusting the amine cross-linker feed ratio, which varies the degree of cross-linking in the polymer shell. The thin-shell microcapsule exhibited suitable barrier properties and tunable dual acid/base-triggered release, with applications in a wide range of pH environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.