Abstract

A mussel-inspired membrane was engineered using an interpenetrating polymeric network (IPN) and was used to target antibiotics and pH-responsive dye removal with a rigorous and speedy reaction. Through charge and pore-based screening, these mechanically durable and environmentally sustainable membranes were made highly selective towards certain dyes and antibiotics. In limited nanoscale regions, such molecular architecture resulted in unique chemical interactions, which facilitated separations. Various spectroscopic and microscopic techniques, as well as zeta potential, TGA, DMA and water contact angle measurements, were used to characterise the final pore designed membrane. Over multiple cycles of operation, it was able to reject >97 percent of both Methylene blue (cationic dye) and Congo Red (anionic dye) at diverse pH conditions. Furthermore, it has the potential to eliminate over 96 percent of both Amoxicillin and Azithromycin medicines. This bioinspired pore-engineered IPN designed membrane is cost-efficient, resilient, stable, non-cytotoxic, and effective in separating antibiotics and organic dyes, making it a promising choice for water remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call