Abstract

Developing smart photosensitizers sensitively responding to tumor-specific signals for reduced side effects and enhanced anticancer efficacy is a major challenge for tumor phototherapy. Herein, a pH-sensitive photosensitizer has been synthesized through introducing a pH-sensitive receptor (dimethylaminophenyl unit) onto the aza-BODIPY core (abbreviated as NAB). Through enveloping hydrophobic NAB with amphiphilic DSPE-mPEG2000, NAB nanoparticles (NPs, diameter ∼ 30 nm) with strong near-infrared absorption (∼792 nm) are obtained. NAB NPs can be activated in weak acidic environment to give high rate of reactive oxygen species (ROS) generation and enhanced photothermal effect. NAB NPs can selectively accumulate in the lysosomes of tumor cells and subsequently activate under the acidic microenvironment of lysosome (pH 5.0) to produce ROS for photodynamic therapy, due to switch-off of the photoinduced electron transfer (PET) pathway. In vivo, pH-enhanced photoacoustic imaging (PAI) and photothermal imaging (PTI...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.