Abstract

Ulcerative colitis (UC) is a classic inflammatory bowel disease (IBD) that represents a serious threat to human health. As a natural flavonoid with multiple biological activities, quercetin (QCT) suffers from low bioavailability through limitations in chemical stability. Here, the study investigates the regulatory effects of quercetin nanoparticles (QCT NPs) on dextran sulfate sodium (DSS) induced colitis mice. Chitosan is modified to obtain N-succinyl chitosan (NSC) with superior water solubility. Nanoparticles composed of sodium alginate (SA) and NSC can encapsulate QCT after cross-linking, forming QCT NPs. In vitro drug release assays demonstrate the pH sensitivity of QCT NPs. Compared with free quercetin, QCT NPs have better therapeutic efficacy in modulating gut microbiota and its metabolites short chain fatty acid (SCFAs) to relieve DSS-induced colitis in mice, thereby alleviating colon inflammatory infiltration, increasing goblet cells density and mucus protein, ameliorating TNF-α, IL-1β, IL-6, IL-10, and Myeloperoxidase (MPO) levels, and recovering intestinal barrier integrity. pH sensitive QCT nanoparticles can reduce inflammatory reaction, improve gut microbiota, and repair intestinal barrier by targeting colon, thus improving DSS induced colitis in mice, providing reference for the treatment of colitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call