Abstract

Results are reviewed of a recent extensive investigation of the behavior of self-assembled pH-sensitive triblock copolymers in aqueous solution. The hydrophilic central block was polyacrylic acid and the two hydrophobic end-blocks were statistical copolymers of n-butyl acrylate and acrylic acid containing 50mol% acrylic acid units. The hydrophobicity of the end blocks could be modified by changing the degree of ionization of the acrylic acid units (α). The relationship between the pH and α was determined. Scattering techniques showed that flower-like micelles are formed that upon increasing concentration connect via bridging into larger aggregates and above a critical concentration into a percolating network. The rheology of the system is controlled by the exchange rate of the end-blocks between micelles and can be fine-tuned by varying the pH. The exchange rate increases exponentially with increasing α. As a consequence the system changes from a quasi-permanent hydrogel at pH<4.5 to a free flowing liquid at pH>5.5. The effect of the ionic strength on the structure and the rheology was found to be important only above 0.5M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.