Abstract

The clinical translation of protein drugs that act intracellularly is limited by the absence of safe and efficient intracellular protein delivery vehicles. Here, pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels (HA-cNGs) were designed and investigated for targeted intracellular protein delivery to CD44 overexpressing MCF-7 breast cancer cells. HA-cNGs were obtained with a small size of 176 nm from an equivalent mixture of hyaluronic acid conjugates with GY(EIAALEK)3GC (E3) and GY(KIAALKE)3GC (K3) peptides, respectively, at pH 7.4 by nanoprecipitation. Circular dichroism (CD) proved the formation of coiled-coil structures between E3 and K3 peptides at pH 7.4 while fast uncoiling at pH 5.0. HA-cNGs showed facile loading of cytochrome C (CC) and greatly accelerated CC release under mild acidic conditions (18.4%, 76.8%, and 91.4% protein release in 24 h at pH 7.4, 6.0, and 5.0, respectively). Confocal microscopy and flow cytometry displayed efficient internalization of CC-loaded HA-cNGs and effective endosomal escape of CC in MCF-7 cancer cells. Remarkably, HA-cNGs loaded with saporin, a ribosome inactivating protein, exhibited significantly enhanced apoptotic activity to MCF-7 cells with a low IC50 of 12.2 nM. These coiled-coil peptide-cross-linked hyaluronic acid nanogels have appeared as a simple and multifunctional platform for efficient intracellular protein delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.