Abstract

The oral administration of nutraceuticals and vitamins is the most compliant route because of its minimal invasiveness, painlessness, ease of use, and cost effectiveness. To overcome the possible destruction and low availability induced by the harsh gastrointestinal environment, we use sodium phytate as a cross-linker to fabricate pH-sensitive core-shell chitosan hollow beads and nanocapsules through the ionic linking method for the controllable release of active ingredients. Texture profile analysis, transmission electron microscopy, dynamic light scattering, and scanning electron microscopy were used to characterize the morphologies and behaviors of the beads and nanocapsules. The size of the beads could be adjusted from 0.1 to 10 mm, and the diameter of the nanocapsules was 50-100 nm. The addition of pectin in sodium phytate remarkably increased the hardness of the chitosan beads. Nile blue A was used as a model active ingredient for loading into the chitosan beads with the maximum encapsulation efficiency (EE) and loading capacity of 96.07 ± 2.45% and 9.61 ± 0.29%, respectively. Polyphenols including catechin, epicatechin, epigallocatechin-3-gallate, and proanthocyanidin were successfully loaded into the chitosan nanocapsules with an EE of above 90%. The cumulative release of Nile blue A from the beads at pH 1.2 (after 2 h) and pH 6.8 (after 6 h) was less than 20% and more than 80%, respectively. Similarly, the cumulative release of polyphenols in the nanocapsules at pH 1.2 (after 2 h) and pH 6.8 (after 6 h) was less than 30% and more than 70%, respectively. In sum, chitosan-sodium phytate with and without pectin could form pH-responsive macro- and nanoscale carriers suitable for the encapsulation and controlled release of active ingredients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call