Abstract

Design of a pH sensitive alginate–guar gum hydrogel crosslinked with glutaraldehyde was done for the controlled delivery of protein drugs. Alginate is a non-toxic polysaccharide with favorable pH sensitive properties for intestinal delivery of protein drugs. Drug leaching during hydrogel preparation and rapid dissolution of alginate at higher pH are major limitations, as it results in very low entrapment efficiency and burst release of entrapped protein drug, once it enters the intestine. To overcome these limitations, another natural polysaccharide, guargum was included in the alginate matrix along with a cross linking agent to ensure maximum encapsulation efficiency and controlled drug release. The crosslinked alginate–guar gum matrix is novel and the drug loading process used in the study was mild and performed in aqueous environment. The release profiles of a model protein drug (BSA) from test hydrogels were studied under simulated gastric and intestinal media. The beads having an alginate to guar gum percentage combination of 3:1 showed desirable characters like better encapsulation efficiency and bead forming properties in the preliminary studies. The glutaraldehyde concentration giving maximum (100%) encapsulation efficiency and the most appropriate swelling characteristics was found to be 0.5% (w/v). Freeze-dried samples showed swelling ratios most suitable for drug release in simulated intestinal media (∼8.5). Protein release from test hydrogels was minimal at pH 1.2 (∼20%), and it was found to be significantly higher (∼90%) at pH 7.4. Presence of guar gum and glutaraldehyde crosslinking increases entrapment efficiency and prevents the rapid dissolution of alginate in higher pH of the intestine, ensuring a controlled release of the entrapped drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call