Abstract

Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

Highlights

  • Cells maintain intracellular pH within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors

  • Under-represented in the human proteome with ∼2% frequency (Webb et al, 2011), histidines are found in critical regions of G-protein coupled receptors, GPCRs (OGR1 and G-protein coupled receptor 4 (GPR4)), intracellular molecules involved in actin assembly (Talin and Cofilin), membrane proton pumps and acid-sensing ion channels, ASICs (Schonichen et al, 2013b)

  • 4 isoforms (MCT1–MCT4) have been functionally characterized as proton-linked monocarboxylate transporters (Morris and Felmlee, 2008; Halestrap, 2012; Halestrap and Wilson, 2012). This is critical as MONOCARBOXYLATE TRANSPORTER (MCTs) (MCT1 and MCT4) are routinely overexpressed in tumors primarily regulating the efflux of lactate and protons as byproducts of glycolysis from intracellular to extracellular space in order to maintain physiological pHi contributing to extracellular acidosis

Read more

Summary

Introduction

Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. Extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.