Abstract

In the past decades, polymer-drug conjugates of anticancer agents have gained much attention due to their enhanced aqueous solubility, improved pharmacokinetics, and better drug utilization than their conventional insoluble counterparts. Several polymer-drug conjugates have entered the third phase of clinical trials yet suffer from inherent deficiencies, including uncontrolled drug release and unclear degradation mechanisms. In this study, a pH/reactive oxygen species (ROS) dual-responsive PEG-doxorubicin (DOX) conjugate (denoted as TPD) was synthesized through acyl alkynyl-amine click reaction by PEG dipropiolate (PEGB), amine-terminated thioketal (TKL), and doxorubicin (DOX). Due to the generated ene-amine and thioketal in the backbone, the prepared amphiphilic TPD not only has a high drug loading ratio for photosensitizer chlorin e6 (Ce6) but also has the sensitivity to the acidic tumor microenvironment (TME) and ROS. Considering the complex conditions of TME, the prepared TPD@Ce6 nanoparticles (NPs) might respond to the relatively low pH and release Ce6 initially, and upon laser radiation, Ce6 produces abundant singlet oxygen (1O2) to achieve a programmable accelerated release of DOX and more Ce6 at the tumor site. In addition, the NIR fluorescence of DOX could monitor drug delivery and controlled release. The developed TPD@Ce6 NPs can realize the targeted tumor in combination therapy with negligible cytotoxicity on normal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.