Abstract
PP-50, a synthetic pH-responsive biopolymer, is here shown to increase the permeability of the phospholipid bilayer to trehalose, a disaccharide accumulated in desiccation tolerant organisms across all kingdoms. Uptake of 251 ± 6 m m intracellular trehalose facilitated an increase in the membrane integrity of vacuum dried cells by a factor of 9 ± 1 and reduced extent of hemoglobin oxidation in dried cells from 66 ± 1% to 23 ± 3%. To elucidate the mechanism of PP-50 mediated trehalose delivery, permeability studies were conducted using molecules ranging in size from sucrose to 10 kDa poly(ethylene glycol). It was shown that the logarithm of relative diffusant membrane permeability decreased linearly with diffusant molecular volume, suggesting transport via non-Stokesian diffusion. Consistent with this conclusion, topographic atomic force micrographs reported membrane thinning proximate to PP-50 adsorption on the erythrocyte membrane, a phenomenon associated with increased incidence of phospholipid hydrocarbon chain bending.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.