Abstract

A series of poly(dimethysiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA) block copolymers were synthesized with atom transfer radical polymerization (ATRP). In aqueous solution the polymers self-assembled into micelles with diameters between 80 and 300 nm, with the ability to encapsulate DOX. The polymer with the shortest PDMAEMA block (5 units) displayed excellent cell viability, while micelles containing longer PDMAEMA block lengths (13 and 22 units) led to increased cytotoxicity. The carriers released DOX in response to a decrease in pH from 7.4 to 5.5. Confocal laser scanning microscopy (CLSM) revealed that nanoparticles were taken up by endocytosis into acidic cell compartments. Furthermore, DOX-loaded nanocarriers exhibited intracellular pH-response as changes in cell morphology and drug release were observed within 24 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.