Abstract
Ethyl cellulose (EC) is widely used in the pharmaceutical field as a polymeric excipient to fabricate sustained-release drug delivery systems. To develop a controlled release carrier exploiting the unique characteristic acidic environment of the target tumor site, this study examined the use of EC and lecithin (LC) as a nanoparticulated system. Paclitaxel and dihydroartemisinin were used as model drug combinations. The optimized formulated nanoparticles (NPs) of EC (EC NPs) and EC/LC (EC/LC NPs) were spherical and approximately 130 nm in diameter as determined by dynamic light scattering and electron microscopy analyses. The in vitro drug release from EC/LC NPs exhibited a pH-dependent pattern. In in vitro cell studies, the NPs were taken up by cells, and cell growth was inhibited by drugs released from the formulations. Most importantly, the in vivo anti-tumor study in mice showed a significant reduction in tumor volume after the intravenous administration of EC/LC NPs, suggesting the potential of using EC and LC as controlled and pH-sensitive drug delivery carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.