Abstract

N-Heterocyclic carbene-stabilized metal nanoparticles have drawn much attention over the last decade due their strong carbon metal bond. Although several reports show increased stability of such N-heterocyclic carbene-stabilized metal nanoparticles, only limited examples of water-soluble N-heterocyclic carbene stabilized metal nanoparticles are known to date. However, water dispersibility and stability in biologically relevant solvents would be a prerequisite for any biological applications. Drawing from the natural amino acid chiral pool, L-histidine was utilized for preparing chiral NHC ligands in the synthesis of water soluble NHC-stabilized gold nanoparticles. For this purpose, N-acetyl-L-histidine ethyl ester was converted into its imidazolium salt either using methyl iodide or 2-iodopropane as alkylation agent. Subsequent reaction of the imidazolium salt with [Au(SMe2)Cl] yielded the corresponding organometallic gold chloride complex. Histidine-2-ylidene stabilized gold nanoparticles were first generated in organic solvents; the histidine derived capping ligand bore ethyl ester moieties which were saponified, affording water soluble pH-responsive NHC-stabilized gold nanoparticles. These gold nanoparticles show remarkable stability in aqueous solutions, with gold nanoparticle solutions remaining stable after months of storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call