Abstract

Ahollow metal organic framework derivative β-Co(OH)2has been prepared, which possesses oxidase and peroxidase-like activities. Oxidase-like activity is derived from the generation of free radicals, and peroxidase-like activity is related to the electron transfer process. Unlike other nanozymes with dual enzyme-like activities, β-Co(OH)2 possesses pH-responsive enzyme-like activities, among which the β-Co(OH)2 exhibits superior oxidase and peroxidase-like activities under pH of 4 and 6, respectively, which could avoid mutual interference between multiple enzymes. Based on the phenomenon that enzyme-like activities of β-Co(OH)2 can catalyze colorless TMB to generate blue oxidized TMB (oxTMB) with absorption peak at 652 nm, the sensors integrating total antioxidant capacity and H2O2 quantification were developed. The oxidase-like activity-based colorimetric system has a sensitive response to ascorbic acid, Trolox, and gallic acid, in which the limit of detection for those antioxidant substances was 0.54 μM, 1.26 μM, and 14.34 μM, respectively. The sensors based on peroxidase-like activity hadlow limit of detection of 1.42 μM for H2O2 and alinear range of 5-1000 μM. Theproposed method can be well applied to the detection of the total antioxidant capacity of kiwi, Vc tables, orange and tea extract with high accuracy, and H2O2 determination in milk and glucose detection in beverages with satisfactory recovery (within 97-106%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call