Abstract
Dapsone (DAP) is a bactericidal agent used in the treatment of leprosy, caused by Mycobacterium leprae. Despite its therapeutic potential, DAP has low solubility, which results in allow therapeutic index and a high microbial resistance. Recently, new approaches were used to increase the DAP solubility. In particular, the use of interpenetrating polymer network (IPN)-hydrogels based chitosan (CS) for the controlled release of DAP provides some advantages because they can modify their swelling properties and network structures as a response to environmental stimuli. The aim of this study was to synthesize and physicochemically characterize pH-responsive chitosan/polymer hydrogels to control the release of DAP. For this reason, different combination of polymers, such as polyvinyl pyrrolidone, polyethylene glycol and hydroxypropyl methylcellulose, and concentrations of the cross-linking agents (glutaraldehyde) were used and then blended to the CS. The resulting hydrogels were evaluated in terms of physicochemical and swelling properties, rheological analysis and in vitro release of DAP at different pHs (1.2–6.8). Hydrogels were further characterized by Fourier transformed infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) analysis. pH-responsive DAP-loaded hydrogels may represent the set-up for developing potential oral formulations for the treatment of leprosy caused by Mycobacterium leprae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.