Abstract

In this work, we introduce a simple and effective method for the controlled release of dye from dye saturation flocs by a well-designed pH responsive chitosan-based flocculant. The dye flocculation capacities could be precisely controlled from 0.5 to 2 g g−1 by simply adjusting the pH of the desorption solution. A series of flocs with different dye flocculation capacities was prepared and used as nitrogen-rich precursors to prepare nitrogen-doped carbon materials through one-step carbonization. The results demonstrate that the specific surface areas, pore structures and supercapacitance performance of the resulting N-doped carbon materials could be readily controlled by varying the dye flocculation capacity. By using a dye sludge floc with an appropriate dye flocculation capacity (1.5 g g−1) as a precursor, the resulting N-doped material exhibited a high specific capacity and good cycling performance for a supercapacitor electrode. The unique pH-responsive properties of the chitosan-based flocculant facilitated easy tuning of the surface cationic degree and deprotonation behavior by varying pH. This work presents a new concept for balancing between environmental capacity and energy capacity using a smart pH-responsive carrier system based on modified chitosan, which is highly promising for the recycling of industrial wastewater to produce energy materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call