Abstract

Novel pH-responsive assemblies (PEG-lipid:DOPE liposomes) containing tunable and bifunctional phenyl-substituted vinyl ether (PIVE) cross-linkers were prepared. The assemblies consisted of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), acid-cleavable poly(ethylene glycol) (PEG)-conjugated lipids, pDNA, and protamine sulfate (PS). The PIVE linkage was designed to hydrolyze under acidic conditions, and the hydrolysis studies of PEG-lipid compounds containing PIVE at pH 4.2, 5.4, and 7.4 indicated that the hydrolysis rates of PIVE linker were influenced by the substitution of electron withdrawing or electron donating groups on the phenyl ring. Acid-catalyzed hydrolysis of PIVE leads to destabilization of the acid labile PEG-PIVE-lipid:DOPE liposomes via dePEGylation, thereby triggering content release. Content release assays showed that dePEGylation was highly pH-dependent and correlated with the PIVE proton affinity of the phenyl group. These results indicated that the dePEGylative triggering based on a new pH-sensitive PIVE linkage can be controlled. In vitro transfection studies on the pH-responsive assemblies containing mPEG-(MeO-PIVE)-conjugated 1,3-dioctadecyl-rac-glycerol lipids (mPEG-(MeO-PIVE])-DOG) showed higher transfection efficiency compared to that of polyethylenimine (PEI), a positive control, on HEK 293 and COS-7 cells. In addition, lower cytotoxicity of PEG-PIVE-lipid:DOPE liposomes/PS/DNA was observed in comparison to PEI. These results suggest that PEG-PIVE-lipid:DOPE liposomes can be considered as nonviral vehicles for drug and gene delivery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.