Abstract

Development of simple, sensitive, and reliable fluorescence sensors for monitoring the residue, distribution, and variation of organophosphorus pesticides (OPs) in agricultural crops is highly urgent but remains challenging, which is ascribed to deprivation of an ideal fluorophore and ingenious detection strategy. Herein, we report the fabrication of cadmium telluride quantum dots (CdTe QDs) with bright emission, good water dispersion, and long emission wavelength for OP screening based on the unique response of CdTe QDs to pH and the inhibition of OPs on acetylcholinesterase (AChE) activity. AChE catalyzed hydrolysis of acetylcholine (ACh) into CH3COOH, which protonated CdTe QDs to decline the fluorescence, whereas target OP impeded AChE from catalyzing hydrolysis of ACh into CH3COOH, making little influence in fluorescence of CdTe QDs. On the basis of the change in fluorescence, sensitive detection of OP was acquired, with the limit of detection at 0.027 ng/mL, which was comparable or lower than that of most known OP sensors. Furthermore, the CdTe-QD-based sensor was successfully applied for precisely monitoring the residue, distribution, and variation of methidathion in Chinese cabbage and cultivated soil. Therefore, the proposed sensor was anticipated to supply a promising alternative for food safety guarantee and was an valuable application for OP screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call