Abstract

At the Hanford Site in Washington State, the pH values of contaminant plumes resulting from leaking of initially highly alkaline-saline radioactive waste solutions into the subsurface are now found to be substantially neutralized. However, the nature of plume pH neutralization has not previously been understood. As a master geochemical variable, pH needs to be understood in order to predict the fate and transport of contaminants carried by the waste plumes. Through this laboratory study, we found that the plume pH values spanned a broad range from 14 (within the near-source region) down to the value of 7 (lower than the pH value of the initial soil solution) while the plume was still connected to an actively leaking source. We defined two zones within a plume: the silicate dissolution zone (SDZ, pH 14-10) and the neutralized zone (NZ, pH 10-7). Quartz dissolution at elevated temperature and precipitation of secondary silicates (including sodium metasilicate, cancrinite, and zeolites) are the key reactions responsible for the pH neutralization within the SDZ. The rapid and thorough cation exchange of Na+ replacing Ca2+/Mg2+, combined with transport, resulted in a dynamic Ca2+/Mg2+-enriched plume front. Subsequent precipitation of calcite, sodium silicate, and possibly talc led to dramatically reduced pH within the plume front and the neutralized zone. During aging (after the plume source became inactive), continued quartz dissolution and the secondary silicate precipitation drove the pH value lower, toward pH 11 at equilibrium within the SDZ, whereas the pH values in the NZ remained relatively unchanged with time. A pH profile of 11 from the plume source to pH 7 at the plume front is expected for a historical plume. This laboratory-based study provided realistic plume pH profiles (consistent with that measured from borehole samples) and identified underlying mechanisms responsible for pH evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.