Abstract
Hydrogen ion equilibria of the reaction center protein from photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus dissolved in micellular solution were studied by acid-base titration to estimate the water accessibility of protonatable residues of the protein determined from structural data. The ionizable amino acids of the reaction center underwent protonation-deprotonation with protons from the interfacial layer, which, however, exchanged protons from the aqueous bulk phase. The equilibrium was described in terms of the buffering capacity of the multiphase system. The detergents decreased the proton activity coefficient (increased the buffering capacity) of the aqueous solution by a factor of 0.33 (in 0.03% Triton X-100 and LDAO) and 0.12 (0.04% dodecyl beta-D-maltoside). The observed buffering capacities of the reaction center protein were large and detergent-dependent. However, corrections for proton activities made the pH dependence of buffering capacities in different detergents uniform and similar to that expected from the number and pK values of protonatable groups of the protein. The vast majority of protonatable amino acids of the reaction center are in protonation equilibria with the aqueous bulk phase on an extended time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.