Abstract

Well-defined amphiphilic block copolymers composed of hydrophilic and hydrophobic blocks linked through an acid-labile acetal bond were synthesized directly by RAFT polymerization using a new poly(ethylene glycol) (PEG) macroRAFT agent modified with an acid-labile group at its R-terminal. The new macroRAFT agent was used for polymerization of poly(t-butyl methacrylate) (PtBMA) or poly(cholesterol-methacrylate) (PCMA) to synthesize well-defined block copolymers with a PEG block sheddable under acidic conditions. The chain extension polymerization kinetics showed known traits of RAFT polymerization. The molecular weight distributions of the copolymers prepared using the new macroRAFT agent remained below 1.2 during the polymerizations and the molecular weight of the copolymers was linearly proportional to monomer conversions. The acid-catalyzed hydrolysis behavior of the PEG-macroRAFT agent and the PEG-b-PtBMA (Mn=13,600 by GPC, PDI=1.10) was studied by GPC, 1H NMR and UV–vis spectroscopy. The half-life of acid-hydrolysis was 70min at pH 2.2 and 92h at pH 4.0. The potential use of the pH-labile shedding behavior of the copolymers was demonstrated by conjugating a thiol-modified siRNA to ω-pyridyldisulfide modified PEG-b-PCMA. The resultant PEG-b-PCMA-b-siRNA triblock modular polymer released PCMA-b-siRNA segment in acidic and siRNA segment in reductive conditions, as confirmed by polyacrylamide gel electrophoresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.