Abstract

The stability of a drug payload inside a nanocarrier at physiological environment and the release of the said drug at specific tumor cells in a sustainable manner are the two most important factors that determine the efficiency of a smart targeted drug-delivery system. In this work, 2-hydroxyethyl methacrylate and a coumarin-based methacrylate monomer containing β-thiopropionate moiety were copolymerized via reversible addition-fragmentation chain transfer (RAFT) process, followed by characterization using NMR and GPC. The said copolymer self-assembled at physiological pH to form vesicular nano-aggregates which was confirmed using DLS, TEM and by fluorescence measurements. These vesicles were further stabilized by photochemical crosslinking via coumarin (2π + 2π) cycloaddition reaction. These cross-linked vesicles (CVs) exhibited a 38% reduction in premature drug leakage as compared to the uncross-linked vesicles (UCVs) at physiological pH. Additionally, a slow hydrolysis of the β-thiopropionate moieties under mildly acidic conditions prevalent in tumor cells resulted in disassembly of the vesicles, thereby releasing the loaded drug in a sustainable manner. Studies related to in vitro toxicity, efficiency of cellular uptake and pH-responsive antineoplastic activity of doxorubicin (DOX) loaded in the cross-linked vesicles (CVs) toward cancer cell lines were undertaken. A significant reduction in IC50 was noticed for DOX-loaded CVs in comparison to free DOX toward MG63 cancer cell lines, making these vesicles as potent nanocarrier systems for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call