Abstract

We investigated the effect of pH (5.2 to 6.8) on the hydrolysis of a sodium polyphosphate in water, milk, calcium caseinate, and spreadable processed cheese, as well as the effect of pH on the cheese structure. Monitoring of the hydrolysis in water and the different milk matrices was carried out using 31P nuclear magnetic resonance technique. In general, the decrease in pH increased the hydrolysis of polyphosphates in all matrices. The presence of calcium in milk increased the rate of hydrolysis. Hydrolysis in milk was higher than in calcium caseinate, probably due to lower molecular mobility in concentrated systems with high viscosity. Increasing the pH decreased the hardness and adhesiveness of the cheeses. At low pH (5.2 and 5.6), the cheeses presented a granular structure, although, at more neutral pH (6.0 to 6.8), the structure was continuous, homogeneous, and more fluid. These results highlight the importance of precise pH control in the manufacture of processed cheeses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.