Abstract

H+ accumulation at the sarcolemma is believed to play a key role in determining the electrophysiological correlates of fatigue. This paper describes an in vitro method to externally manipulate muscle pH while measuring the resultant effect on surface-detected median frequency (MDF) and conduction velocity (CV) parameters. Hamster muscle diaphragm strips (n = 8) were isolated with the phrenic nerve intact and placed in an oxygenated Krebs bath (26 degrees C). The muscle was clamped to a noncompliant load cell to measure isometric contractile tension. Tetanic contraction was developed via 40-Hz supermaximal stimulation of the phrenic nerve. Differential signals were recorded from three electromyogram (EMG) detection surfaces for computation of CV (via the phase shift in the EMG signals) and MDF. Repeated trials were conducted at bath pHs of 7.4, 7.0, and 6.6. Bath pH was altered by aerating predetermined concentrations of O2 and CO2 into the bath. Decreases in bath pH resulted in decreases in both initial MDF and initial CV. The differences in initial MDF and initial CV were significant (P less than 0.001) for each of the bath pH conditions. In general, the change in bath pH resulted in an equal percent change in initial MDF and initial CV. This suggests that the change in bath pH caused a decrease in CV without significantly altering the fundamental shape of the M wave. In contrast, the EMG was altered differently during stimulated contractions. During stimulation, the rate of decay of CV was 65% of the rate of decay of MDF.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.