Abstract

The objective of this study was to develop a rupturable, capsule-based pulsatile drug delivery system with pH-independent properties prepared using aqueous coating. The drug release is induced by rupturing of the top-coating, resulting by expanding of swellable layer upon water penetration through the top-coating. Croscarmellose sodium (AcDiSol ®) is a preferable superdisintegrant compared to low substituted hydroxypropylcellulose (L-HPC) and sodium starch glycolate (Explotab ®), because of controlled lag time, followed by a quick and complete drug release. However, due to its anionic character, AcDiSol ® showed pH-dependent swelling characteristics (pH 7.4 >0.1 N HCl) resulting in a pH-dependent lag time. The pH dependency could be eliminated by the addition of fumaric acid to the swelling layer, which allowed to keep an acidic micro-environment. Formation of the rupturable top-coating was successfully performed using an aqueous dispersion of ethylcellulose (Aquacoat ® ECD), whereby sufficient drying during the coating was needed to avoid swelling of the AcDiSol ® layer. A higher coating level was required, when aqueous dispersion was used, compared to organic coatings. However, an advantageous aspect of the aqueous coating was the lower sensitivity of the lag time to a deviation in the coating level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.